
C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Threading on the Node

OpenMP works great if it is implemented
correctly

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Looking at KNL
●  Lots of cores

●  While MPI can run across all the cores, there are situations where MPI
hits bottlenecks due to the number of MPI tasks on the node

●  We ALWAYS want to run multiple MPI tasks on the node
●  Want to identify a MPI sweet spot
●  A good guide is to start with a MPI task on each NUMA region

●  OpenMP
●  Traditional approach has many short-comings

●  Requires a lot of code modifications
●  Lots of Comment Line directives
●  Does not deal with locality
●  Difficult to load balance

●  Is there a better way?
●  SPMD OpenMP

●  Fewer code modifications
●  Requires a better understanding of threads

●  KNL has NUMA issues

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Why does all-MPI work well on multi/many core
architectures?

● All MPI forces locality
●  Each MPI task allocated/utilizes memory within the NUMA region that

it is running in.
● All MPI allows tasks to run asynchronously

●  This allows very good sharing of the memory bandwidth available on
the node

●  We have found that KNL Quadrant mode is very good for all-MPI due
to the memory bandwidth sharing to all memories

● One MPI disadvantage is that re-distributing work is
difficult and inefficient
●  Have to move a lot of data

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Can we take clues from all-MPI advantages and
disadvantages to design a good OpenMP code?

● Can we force locality like MPI does?
●  MPI forces each MPI task to allocate the data that it uses.
●  Tradition OpenMP has no notion of locality

● Can we allow threads to work asynchronously?
●  MPI only barriers when messages are exchanged
●  Tradition OpenMP implies barriers after a parallel region
●  Loop level parallelism forces too much synchronization

● Can we somehow control scheduling of the threads to
enable more dynamic re-distribution of work

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Can we force locality like MPI does?

●  Introduce a high level !$OMP PARALLEL region
●  Down the call chain the user is responsible for managing threads

●  Initialize shared data within the !$OMP PARALLEL region, each thread
allocates the data it will be using

●  Application developer must assure that shared data is shared as in the
Fortran/C/C++ convention
●  This can be an issue down the call chain, when a shared local variable is

required; that is, a reduction variable
●  Application developer must assure that private data is allocated on stack as

with the Fortran and C conventions

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

What if you need a shared variable down the call
chain

Subroutine within_a_parallel()

Real, pointer :: shared_p(:)

!$omp single
allocate(shared_p(0:100))
!$omp end single copyprivate(share_p)

…

End subroutine

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Can we allow threads to work asynchronously?

● Must minimize sychronization
●  Calling un-treaded routines

●  Must extend concept to all computational kernels
●  You can have replicated computation across the threads

●  Calling library routines
●  Can each thread call a un-threaded library routine
●  If library routine is threaded – must barrier prior to and after call

●  Calling MPI
●  Consider having each thread do it own message passing

●  Example coming

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

High-level OpenMP and Thread Scalable MPI-
RMA:

Application Study with the Wombat Astrophysical MHD Code

Slide 9

Dr. Peter Mendygral
Cray Inc.

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Wombat Driver and Parallel Region

Slide 10

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Communication Concerns

Slide 11

●  If a rank is made much wider with threads, serialization around MPI
will limit thread scaling and overall performance
●  Nearly all MPI libraries implement thread safety with a global lock
●  Cray is addressing this issue

●  Released per-object lock library
●  Threading enhancements under design now for two-sided (released per-object lock library

a first step)

●  Wide OpenMP also means more communication to process
●  Every Patch now has its own smaller boundaries to communicate
●  Starts tipping the behavior towards the message rate limit
●  Two-sided tag matching cannot be done in parallel and will limit thread scaling

●  May start hitting tag limit

●  Slower serial performance of KNL => maybe look for the lightest
weight MPI layer available
●  MPI-RMA over DMAPP on Cray systems is a thin software layer that achieves

similar performance to SHMEM

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

RMA Boundary Communication Cycle

Slide 12

●  Single passive RMA exposure epoch used for the duration of the application
●  No explicit synchronization between ranks
●  RMA semantics make computation/communication overlap simpler to achieve

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Thread Hot MPI-RMA

Slide 13

●  DMAPP library was enhanced to be “thread hot” for SHMEM
●  “thread hot” is more than “thread safe”
●  “thread hot” implies concurrency and performance across threads was central to the design

●  MPI-RMA over DMAPP leverages this feature as of MPT 7.3.2
●  No locks used in DMAPP layer
●  Very light weight locking in MPI layer
●  Design makes it very likely that locks are uncontended
●  Network resources efficiently managed among threads
●  Performance approaches that of N independent processes when using N threads

●  Example on HSW with 16 threads each on 2 nodes
●  OSU passive MPI_Put bandwidth for 8 B message
●  MPT 7.3.1 = 5.27 MB/s
●  MPT 7.3.2 = 399.9 MB/s
●  75X improvement

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E
Slide 14

●  Tunable Patch size very important to performance

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E
Slide 15

●  Rank reordering
●  Cartesian domain optimization for XC topology/placement improves largest run wall time by additional

2.3%

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E
Slide 16

●  Less than 8% difference between 1 and 36 threads per rank
●  Ideal for application like Wombat is 0%

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Can we somehow control scheduling of the threads
to enable more dynamic re-distribution of work

● With SPMD OpenMP, the user can take the responsibility
for allocating the work to the threads
●  Can be simple chunking
●  Can understand the scarcity of the problem and allocate work

accordingly
●  Can dynamically use runtime statistics to address load-imbalance

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

What about performance portability

● When running S3D on Titan we used Cuda Streams
extensively
●  Consider using the 16 Cuda streams for the 16 threads within the

SPMD unit.

UH Workshop on OpenACC 23

Example of Cuda Streams (1)

UH Workshop on OpenACC 24

!$ACC DATA PRESENT(ids_lgl1,ids_ptr,ug,u)
!$ACC& CREATE(ug2)
 call rzero_acc(ug ,stride*n)
 call rzero_acc(ug2,stride*n_nonlocal)

 do k = 0,stride-1
!$ACC PARALLEL LOOP GANG VECTOR ASYNC(k+1)
!$ACC& PRIVATE(il,sil,sig)
 do i=1,nglobl ! local Q^T
!$ACC LOOP SEQ
 do j = ids_ptr(i),ids_ptr(i+1)-1
 il=ids_lgl1(j)
 sil = k*n+il
 if (i.le.n_nonlocal) then ! MPI
 sig = k*n_nonlocal+i
 ug2(sig) = ug2(sig)+u(sil)
 else
 sig = k*n+i
 ug(sig) = ug(sig)+u(sil)
 endif
 enddo
 enddo
!$ACC UPDATE HOST(ug2(k*n_nonlocal+1:(k+1)*n_nonlocal)) ASYNC(k+1)
 enddo
!$ACC WAIT

Example of Cuda Streams (2)

UH Workshop on OpenACC 25

do k = 0,stride-1
!$ACC UPDATE DEVICE(ug2(k*n_nonlocal+1:(k+1)*n_nonlocal)) ASYNC(k+1)

!$ACC PARALLEL LOOP GANG VECTOR ASYNC(k+1)
!$ACC& PRIVATE(il,sil,sig)
 do i=1,nglobl ! local Q
!$ACC LOOP SEQ
 do j = ids_ptr(i),ids_ptr(i+1)-1
 il = ids_lgl1(j)
 sil = k*n+il
 if (i.le.n_nonlocal) then ! MPI
 sig = k*n_nonlocal+i
 u(sil) = ug2(sig)
 else
 sig = k*n+i
 u(sil) = ug(sig)
 endif
 enddo
 enddo
 enddo
!$ACC WAIT
!$ACC END DATA

Conclusion

UH Workshop on OpenACC 26

●  To scale well on many/multi-core systems, application
developers must develop efficient threading
●  Must pay attention to NUMA regions
●  Must avoid overhead caused by

●  Too much synchronization
●  Load imbalance

● On some systems all-MPI will perform very well and will
out-perform poorly implemented OpenMP
●  Not performance portable to hosted accelerators

● SPMD or Wide OpenMP is an alternative
●  Application developers have all the power to generate difficult to find

race conditions, must understand the implications of high level
threading

